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0. Introduction
There are a number of interesting problems and results which involve being
able to compute Koszul cohomology groups; for example, the local Torelli
problem, understanding the canonical ring of a variety of general type, Petri’s
work on the ideal of a special curve, Mumford’s projective normality theorem,
and Donagi’s work on the global Torelli theorem for projective hypersurfaces.
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Unfortunately, there seem to be fewer ways to compute Koszul cohomology
groups than reasons to compute them. It seemed fruitful to try to find a few
techniques which would make it easier to approach these problems.

For V' a finite dimensional complex vector space, S(V) the symmetric
algebra over ¥, and B = @ a graded S(V)-module, we have the Koszul

qEL q
complex
dpiy
(0.1) -~—>/\P+'V®B_1L—”—'»/\PV®B SN VeB,,

The Koszul cohomology groups are defined by

kerd,
0.2 B, e AL R
(02) pd BV) = g
If we have a minimal free resolution
03) > DM, ®5V)-q) - D M,®5(V)(~q)~B~0,
924 =40

then a well-known result is the Syzygy Theorem (1.b.4)
(0.4) po(BV) = M, 0 (B.V).

The situation we will study in this paper is

X a compact complex manifold,
0 L-X an analytic line bundle,

(05) F- X a coherent analytic sheaf,

W C H°(X, L) alinear subspace.
We then take
(0.6) B= @ H(X,5®qL), V=W

qE€EZ

and denote

(0.7) K, (X.F,L,W)=%, (B, V)

with the conventions
(D IfF = Ox(E), we write K, (X, E, L, W)
(2) If § = Oy, we suppress it and write X, (X, L, W).
GUuw= HO(X L), we suppress it and write 96’ (X %, L).
(4) If i = 0, we may suppress it and write K. (X F, L, W).
By Serre Duality, we have

(0.8) (X E LW =Hii (X, Kyx®E* LW),
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where dim X = n. There is the spectral sequence for Koszul cohomology which
abuts to zero and has :

(0.9) E{"’=3€j’p‘k+p(X, %, L, W),

where k is a constant. A consequence of this is the Duality Theorem (2.c.6)
(0.10) %p‘q(X,E,L,W)*z”JC (X,Ky®E* L,W),
where dim X = n and dim W = r + 1, provided that

(0.11) W C H°(X, L) isbase-point free

and

r—n—p,ntl—gq

H(X,E®(q—i)L) =0,
H(X,E®(q—i—1)L)=0, fori=1,2,---,n— 1.
Note that the hypothesis (0.12) is vacuous when X is a curve. When X is

Kahler, W is base-point free, and dimg,,,;(X) = n for some m > 0, then we
have (2.c.10)

(0.13) K, (X, Ky, LW)* =% (X,L,W)

for g=n+ 1, and, if either n =1 or A%""(X) =0, for g =n, as the
hypothesis (0.12) of the Duality Theorem holds by Mumford’s variant of the
Kodaira Vanishing Theorem. In particular, when the hypotheses of (0.13) hold,
(0.14) Kyt X, Ky, LW ) ~C.

The Theorem of the Gaussian class (2.b.9) shows that the geometrically defined
Koszul class, the Gaussian class or extrinsic fundamental class

Y € 96r—n,n+1(/Y’ KX’ La W)
defined using the tangent planes to ¢, ( X), is a generator provided dim ¢, ( X)
= n.
In §3, there are three computational results. The Vanishing Theorem (3.a.1)
says
(0.15) %p_q(X,E,L,W)ZO if HO(X, E® qL) <p.

(0.12)

r—n—p,n+l—gq

Although this is an elementary result, it has turned out to be quite useful,
especially in tandem with the Duality Theorem. The “Lefschetz Theorems”
relate the Koszul cohomology of a variety X and a smooth hyperplane section
X N H; the main result (3.b.7) is that

(0.16) %p’q(X,L) z%p’q(XﬂH,L)
if X N H is connected and
(0.17) H(X,qL)=0 forallg=0.
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The hypothesis (0.17) is true for ample bundles on varieties X of dimension = 2
with K < 0, so (0.16) holds for K — 3 surfaces, Fano 3-folds, etc.

In many ways, the most delicate result we prove here is the ﬁfp,, Theorem
(3.c.1), which says that if m = dim ¢,(X) and 4°(X, L) = r + 1, then

(0.18) X, (X, L)=0 forp>r—m,
(0.19) ¥,_,, (X, L) =0 unlessp,(X)isan m-fold of minimal degree,

unless either deg @, (X) <7+ 2 — mor ¢, ( X)
lies on an (m + 1)-fold of minimal degree.

(020) H,_,_,(X,L)= o{

In order to prove (0.20), we need the Strong Castelnuovo Lemma (3.c.6) that if
P,,- - -, P,are points in general position in P,, then

P, --,Pliecona

(0.21) ]
rational normal curve

s g{r—l,l(Pl’ Pz" ) "Pd) # 0.
When r + 4 < d < 2r + 2, this is stronger than Castelnuovo’s Lemma.

One application of the Vanishing Theorem and the Duality Theorem is
(4.a.1), which says that for a smooth curve C of genus g and an analytic line
bundle L - C of degree d,

(0.22) ¢, (C) is projectively normal if d = 2g + 1,

(0.23) I(9.(C)) is generated by quadricsif d > 2g + 2,
the syzygies in I, (¢, (C)) are

(0.24) generated by those of the form

YLQ =0,degL, =1 ifd=>2g+ 3,
i

etc. Here (0.22) is Mumford’s projective normality theorem, (0.23) was proved
by Saint-Donat and Fujita, and the statements about syzygies are new.
Actually, (4.a.1) says more, and in conjunction with an existence result (4.a.2)
of F. Schreyer gives a fairly good picture of what a minimal free resolution of
the ideal sheaf of ¢,(C) looks like for d large relative to g. For varieties of
higher dimension and sufficiently ample line bundles, there is a similar result,
the Theorem of the Top Row (4.a.4).

The Arbarello-Sernesi module of X, L is the S(H°(X, L))-module
D,ez HY% X, Ky ® gL). 1f | L|is base-point free and dim ¢,( X) = dim X = n,
we show in Theorem (4.b.2) that, with certain exceptional cases, the Arbarello-
Sernesi module is generated in degree < n — 1 and its relations are generated
in degrees < n. Petri obtained this result for curves in the case when L is
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special; however, this hypothesis is unnecessary. If L = K, we obtain Theo-
rem (4.c.1) about generators and relations of the canonical ring of a variety of
general type.

The H' Lemma (4.d.1) and its improvement (4.d.7) deal with the question of
when the map

(0.25) HY(X,E) - Hom(W, H'(X, E ® L))
induced by cup product is injective, where E — X is an analytic vector bundle
and W C H%(X, L) is a linear subspace. One version is that if L ~ L, ® L,
®---®L,, W=H%X, L), and
(0.26) the base locus of each | L, | has codimension = 2,
(0.27) R(W,E®L®L)<h(X,L,)—2,
then (0.25) is injective. From this, one obtains a Local Torelli Theorem of Kii
(4.d.9) and splitting lemmas (4.d.11), (4.d.12).

For L - C and M — C analytic line bundles over a smooth curve and

W C H%C, L) a base-point free linear system, the H° Lemma (4.¢.1) states
that the multiplication map

(0.28) W® H(C,M) - H(C,L®M)
is surjective if
(0.29) H(C,M® L") <dimW —2.

When dim W =2, this is the base-point free pencil trick. The Explicit H°
Lemma (4.¢.4) states that

HY(C,L)® H(C, M) > H(C,L® M)

is surjective if |L| is base-point free, deg L < deg M, and either deg L +
degM =4g +2ordegM =2g + 1, deg L = 2g, extending a result of Mum-
ford.

For L — X a sufficiently positive line bundle, we obtain from the spectral
sequence for Koszul cohomology the interesting representation (4.f.1)

(030) Hq( X’ Q%) = % %x, L)—q—l,q+l(X’ Q;}’ L)

for the Hodge groups of a projective variety, involving only holomorphic
sections of analytic line bundles.

Finally, there is a section on open problems and an Appendix. In the
Appendix, which is joint work with R. Lazarsfeld, it is shown that on a

compact complex manifold X with analytic line bundles M, —» X, i = 1,2, and
hO(X,M))=r+1,r,= 1, then
(0.31) K wrm1 (X, L) #0 for L =M, ® M,.



130 MARK L. GREEN

In particular, this proves one direction of the Noether-Enriques-Petri conjec-
ture.

The results of §§1 and 2, with the possible exception of the Theorem of the
Gaussian Class, are classical-so classical, indeed, that I could not find out to
whom they should be attributed.

The author is grateful to Ron Donagi, David Eisenbud, Phillip Griffiths,
and Robert Lazarsfeld for some extremely helpful discussions. Especially
useful was a small seminar in which this work was presented for the first time,
which was of tremendous help to me; I wish to thank all the participants, Koji
Cho, Ron Donagi, Phillip Griffiths, Stefanos Pantazis, Igor Reider, and Wu
Xian.

1. Algebraic preliminaries

(a) The Koszul cohomology groups. We will consider

k a field,
4 a finite-dimensional vector space over k,
(1.a.1) S(V) the symmetric algebra on ¥V,
B= EEBZ B, agraded S(V)-module.
g

In this situation, there is a Koszul complex
dys
‘> APTVe B, -—-—»/\PV@B N ‘V®B

dp l.g+1

(1.a.2)
——— AP ® B,

constructed as follows. Let « € V* ® V be the 1dent1ty element. There is a
natural contraction map

(1.2.3) APYS AP YoV

dual to the exterlor product map A\ ?”'V* ® V* - A PV*. Given the multipli-

cation ¥V ® B, - Bq +1, we define 4, , by the commutative diagram:

®Id
A’V ® B, —Ei———»/\f’ Ve Ves,
(1.a.4) a ‘ 1d®m,
AP Ve B,,,

Since

ey
APy LSNPy @ S2p
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is the zero map,

(1.a.5) d,_1441°d,,=0.

So (l.a2) is a complex. We note that in defining d, ,, we are using the
convention

(1.2.6) APV =0 ifp<Qorp>dimV

and that (1.a.5) continues to be true.
Definition. The Koszul cohomology groups of B are

kerdp,q

(1.2.7) K, (B V)= Wy,

By the convention (1.a.6), we have automatically
(1.2.8) T}Cp’q(B,V)=O ifp<0Qorp>dimV.

A standard fact about the cohomology of complexes implies that for any m,

(129) 3 (-1)’dim(%, (B, V)= 3 (—l)p(diI;V)dimk(Bq).

pte=m ‘ pHq=m
Consider
(p1 p2 finite dimensional vector spaces over &,
B', B? graded S(V,)-, S(V, )-modules respectively,
V! 5 | %& a linear transformation,
(1.a.10) +

s(vY) 5 S(V?) the map induced by L on symmetric algebras,

L . . , .
B' > B? a linear transformation preserving the gradings.

|

We will say (L, L) is a morphism of graded modules if
(1.a.11) L(h)-L(b)y=h-b forallheS(V'),bE B
For such a morphism of graded modules, the map
ANPLBL,

NPV ® B] N?y?® B?

descends to Koszul cohomology to give a map

Ly
(1.2.12) K, (B V) SK, (B2V?)
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which is the induced map on Koszul cohomology and has the functorial
property (Lo M), =L, o M, If V' = V? = Vand L = Id we have

L,
(1.a.13) K, (B V) =X, (B> V)

and this notation will always assume L = Id unless it is indicated otherwise. In
this case, the condition (1.a.11) is just that L is a grading-preserving graded
S(V )-module morphism.

(b) Syzygies. Returning to the general situation (1.a.1), assume that B has a
minimal free resolution of the form
(1b1) = D S(V)(~q) ® M, ;> D S(V)~9) ® My, B0,

Zq = q

where the M, (B,V) are finite dimensional vector spaces over k. Such a
resolution exists provided:

(1) dim(B,) < oo for all ¢.

(2) g € Z| B, # 0} is bounded from below.

Definition (1.b.2). The syzygies of order p and weight q for the S(V')-module
Bare M, (B,V). ‘

Alternatively, these are defined inductively as follows:

M, q( B,V) = generators of degree ¢ for B as an
S(V)-module,
M, (B,V) = primitive relations of weight ¢
(1.b.3) for B as an S(V )-module
M, (B,V) = primitive syzygies of weight g among

the relations for B,

These are to be interpreted as follows. If x,, x,,... are generators for B with
deg x; = e;, then a relation of weight ¢ among the generators is one of the form
2ux; =0, u, €87V,

i
A primitive relation of weight g is one that is not an S(¥")-linear combination
of relations of lower weight. If 3, u;x;, =0 are a basis for the primitive

relations of weights e” respectively, a syzygy of weight ¢ is a relation of the
form

Swu’ =0 foralli, withw, € S %(V)

and so on inductively.
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Theorem (1.b.4). As vector spaces over k, X, (B,V) =M,
Proof. We need

(B, V).

ptq

_[C ifp=g=0,
(1.b.35) Ko o(S(V), V) = {o otherwise,

or equivalently that the complex
(1.b.6) s ARSI S VRSV S SY 0

is exact unless / = 0 when the complex reduces to 0 — SV — 0. This is well
known (see [3]); it follows from the same proof as the usual Poincaré Lemma
when one dualizes the complex.

Consider the bigraded complex

NVve@(sveM,, , ), a=0,
k=0
1b7) APi= _
(1.6.7) A’V @B, ,, g=-1,

O’ q < _1>
where d € Z is fixed. As maps, we take
d )
(1.b.8) APa 5 qptla gpal greatl

where for ¢ = 0, d comes from the complex (1.b.6) and for ¢ = -1, d is the
map from (1.a.2), while § is /\ "?V tensored with (-1)? times the degree
(d — p) terms of the minimal free resolution (1.b.1). Note d* = 0, §> = 0, and
dd + 8d = 0. There are thus (see [8]) two spectral sequences ‘E, " E abutting to
the cohomology of the total complex with

(1.0.9) 'Ep9 = H§(A”')=0 forallp,q,

K, a-p(B, V), q=-1,anyp,
"Elp,q = Hg(AO’q) = M—q,d(B’ V), q = O’P = O,
0, otherwise.

W € have
’ q "n —(r—1,q+r
'EP> E s
J AL N /4 .
The mapS

4,
M—q,d(B’ V)- —q+l,d(B’ V)
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are zero by minimality of the resolution (1.b.1), and thus the only nonzero d,’s
are '

d
uEO,—q q+; //E—q,—l
g+1 q+1 °

Since “EF-9 = 0 for all p, g as 'E, = 0 and 'E, E" have the same abutment, we
conclude d  is an isomorphism, so

d
(1.b.10) M, (B, V)%, . (B,V) forallg=>0

which completes the proof.

Remark. It is possible to make the isomorphism of Theorem (1.b.4) more
explicit by expressing the intrinsic part of the maps in the minimal resolution
(L.b.1) in terms of the 3{1,’ q(B, V). One small fact along these lines we will
want later is that the multiplication map

(1.b.11) K, (B.V)®SV K, (B.V), k>0,

is zero. Since it is clear from the definition of the M, /s that the multiplication
map

M, (B,V)® SV M, , (B,V), k>0,

is zero, we notice from the proof that if we tensor the bigraded complex (1.b.7)
by S*V, we get a commutative diagram

M, «(B,V)® StV K, 4 (B, V) ® SkV
Mp,a’+k(B’ V) = gl{:p,a'+k—p(B’ V)

and so conclude (1.b.11).
(c) Cohomology operations. If B, C are graded S(V)-modules, there is a
natural map

(1c1l) (A?V®B,)® (/\"2V® C,) > APV ® (B ® C)giq

by wedging on the first factors and tensoring on the second. This descends to
Koszul cohomology to give the cup product map

(1.c.2) (B,V)®K, (C,V)> (B®C,V).

1’ 4 1’1+P2 Q1tq

If B is a graded S( V)-algebra, we have S(¥)-module map B ® B —» B from
multiplication. By (1.a.13), this induces a map on Koszul cohomology
%, (B® B,V) > %, (B,V)
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which composed with (1.c.2) yields the cup product map for a graded S(V')-
algebra

U
(1.c.3) X, (BV)®K, (BV)->%, B,V).

1+pz,q|+qz(
If B is a commutative algebra, we have

(1.c4) a, Ua,=(-1)"""q, U a,,
whereo; € K, (B, V).

It is also possible to define Massey products. If a; € f}fpi’ LB V) i=1,23,
and

(1.c.5) a,VUa,=0, a,Ua; =0,

then we can write

— +pyt+1
a A a; = dp|+p2+l,q1+qz-l(p)’ p € AN Ve Bq|+qz—l’

(1.c.6)

— P2tpyt+l
«; A s dp2+p3+l,q2+q3—l(7)’ TEN Ve Bq2+q3—ly

and
+1
(107) dp|+p2+p3+1,q|+qz+q3—l(al N1+ (_1)1’1 p A a3) = 0;
so we get an element
+1

(1e8) oy AT+ (-1)""pAhas€ %pl+p2+p3+l,q1+qz+q3—l(B> V).
Choosing different p and 7 changes this element by something in

9{;pl,q](B7 V) U 9{;172+p3+1,qz+q3—1(B’ V)

+%pl+P2+l’QI+QZ—I(B’ V) U S}Cp
so we obtain a well-defined element
(1C9) M(al’ A3, a3) € 9{;171+}72+p3+1,(;1+qu+:;3—-](B’ V)/GD(B’ V)’

where

(B,V),

3,43

GD(B’V) - ((%PI:QI(B’ V) Y %P2+P3+1v42+43—1(B’ V))

+ (%Pl“”ﬂz"‘lylh"‘lh_l(B’ V) Y %Payqa(B’ V)))

(d). The spectral sequence relating Koszul cohomology groups of an exact
complex. Let B be a complex of graded S(V )-modules with maps preserving
the gradings

(1.d.1) 0-B'-B>>B*> --->B" ' 5 B"50.
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Consider the bigraded complex of

c?9= A"V ®Br,  Ifixed,
with maps

d b
crascrtha, cras CPatl

where d comes from the complex B* tensored with /A7 and 8 comes from
(~1)? times the map for the complex (1.d.1) for each fixed p. Thus d* =0,
82 =0 and dé + 8d = 0. So we obtain two spectral sequences 'E, ”E abutting
to the cohomology of the total complex with

Ef? = H{(AP) =K, (B, V),

1.d.2
(1.d2) "Ep9=Hi(A9) = N\'"V ® H?(B;).

If the complex B’ is exact, then "Ef-? = 0 and thus 'EZ' = 0. Thus we have
Proposition (1.d.3). Let B" be an exact complex of graded S(V )-modules
where the maps preserve the gradings. Then there is a spectral sequence with

Ei”’q = S’{:I—q,q(B‘y’ V)

that abuts to zero.

Corollary (1.d4) (Long Exact Sequence for Koszul Cohomology). If 0 - A
- B — C -0 is a short exact sequence of graded S(V )-modules with maps
Dpreserving the gradings, there is a long exact sequence

I %l,q—l(A’ V)- %l,q—](B’ V)- %l,q—l(c’ V)

1.d.5
( ) —>3€O’q(A,V) —>3€0’q(B,V)—>3{O,q(C,V) - 0.

Proof. The only nonzero d,’s are the

d, d,
K, (4. V)>K, (B.V), K, (B,V)->K, (C.V),
(kerd,: %, (4,V) > %, (B,V))

dy
- (cokerdl : %pﬂ,q_](B, V) - %p—{—l,q—l(c’ V))

from which the long exact sequence follows.
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2. The Duality Theorem

(a) Transition to the setting of complex manifolds. The constructions of §1
will be of interest to us primarily in the case

X a compact complex manifold,
L-X an analytic line bundle,
(2al) 1g a coherent analytic sheaf of O,~-modules,

W C H°(X,L) alinear subspace,
where we take

(2.a.2) V=W, B= @ H°(X,F®0,(qL)).
gEZ

Our basic notation will be
(2.2.3) % (X, 5, LW)=%, (B,V)

with the further notational conventions:

() If W= H% X, L), we will drop the W and write T}CI’;,q( X, 9, L)

(2)If 9 = O,(E), where E — X is an analytic vector bundle, we will write
%! (X, E, L,W). .

(3) If = O, we will drop the ¥ and write X, (X, L W).

(4) If i = 0, we will drop the i and write X, (X, ¥, L, W).

f .
If X - Y is an analytic map, and
Ly=f*Ly, Fx :f*(gy)

we have the pullback maps

f*
HO(Y, Ly) > H(X, Ly),
_ "o
H(Y,9,®0,(qLy)) > H(X, 5, ®0,(qLy))-

If Wy = f*W, then by (1.a.12) there is an induced pullback map on Kosziit
cohomology

. r* .
(2.a.4) Ky oV, Fys Ly, Wy) =K, (X, Fy, Ly, Wy)
and also

. bad ,
%;,,q(Y, Fy, Ly) —>€}£;,,q( X, %y, Ly),

. M~
f}CI’,,q(Y, Ly)-%, (X, Ly),
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where in all cases
(2.5) (go f)*=r*og*
We can apply Theorem (1.b.4) to the situation (1.b.1) provided that
(2.a.6) H(X,5®0,(gL)) =0 for g sufficiently negative.
Condition (2.a.6) holds if L is ample, and we will assume henceforth that
(2.a.6) holds. If so, then
H(;,d(X9 Gj’ L’ W)
= generators of the S(W )-module P H'(X,F ® 0,(qL))
gEZ
of degree d,
H{ (X,%,L,W)
= primitive relations of weight d + 1 among the generators

of the S(W )-module P H'(X,F ® 0,(qL)),
gqE€ZL

(2.a.7)

H2i,d(X’ Gf, L9 W)
= primitive syzygies of weight d + 2 of the S(W )-module

@ H'(X,F®0x(qL)),
gq€Z

or in general

‘}C]’;’q( X, ¥, L,W) ~ primitive p’th syzygies of weightd + p

(2.2.8) of the S(W )-module @ H(X,F® 0,(qL)).
q€Z

We denote by X qZVP( W*) the rational map defined by the linear system W
when the base locus of W has codimension = 2, and

xSP(HO(X, L)*)
the map ¢, when W = H%( X, L). In view of the equivalence

STHO(X, L) - H(X,qL)| _ |H*(X, L) ® H*(X,(q — D)L)
is onto for all g = 2 — H%( X, qL) is onto for all g > 2

we see that
(2.a.9) | L|is projectively normal & Xy (X, L) =0 Vq=1.
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We denote

(2.2.10) I(‘PL(X)) = @Iq(‘PL(X))

q=2
the ideal of ¢,(X) in P(H®( X, L)*). If | L| is projectively normal, we have the
short exact sequence of graded modules
(2.a.11)  0- I{9 (X)) > S(H* X, L)) > D H(X,qL) >0

q=0

and thus by comparing minimal free resolutions of I(@,(X)) and
D20 H% X, gL), we have

M, (I(9,(X)), H(X, L))

~ 0 0
—M,,,q( GBOH (X,qL), H( X, L))
q?

(2.a.12)

for | L| projectively normal. Thus

%1,4(XaL) = Iq+l(‘PL(X))/HO(X,L)Iq(q’L(X))’
X, ,(X,L) = primitive relations of weight g + 2
(2.213) among the generators of the S(H°( X, L))-
o module I{ g, (X)),
\for |L |. projectively normal.

In general, if ¥ is a coherent analytic sheaf of O,-modules on a projective
space P = P(V*) and B = @, H(P, F(¢)) then

T @ Ml,q(Ba V) ® GP(‘q) - @ MO,q(B’ V) ® GP(_q)
(2.a.14) =q 9>4
>%-0

is called a minimal resolution of % by free Op-modules; the fact it is a
resolution is a consequence of Theorems A and B. Thus in particular

Theorem (2.a.15). Let X be a compact complex manifold, L - X an analytic
line bundle, and S‘/q,L(X) the ideal sheaf of ¢,(X) in P = P(H%( X, L)*). If|L| is
projectively normal, then

DK (X, L)®O(-1—q)
(2.2.16) 7>0
- @ L:}Cqu(X, L) ® @P(—q) - gw(x) -0

¢=0

is a minimal resolution of Efq,L( x) by free O p-modules.
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A few elementary properties of the Koszul cohomology groups in this setting
are
(2.a.17) K (X, FQKL, LW) =K, (X, 9, L,W),
(2.a.18) ‘pr,q( X,L,W)=0 ifq<O0for L not the trivial bundle,

C ifp=0
2.a.19 K, o(X, L, W ={ '
(2.2.19) 7o ) 0 otherwise,
(2220) H) (X, E,LW)* ~K;, (X, Ky®E* L W),

where dim X = n.

Property (2.a.17) is clear from the definition. Property (2.2.18) follows
because we cannot have both H%(X, L) 0 and H°( X, gL) =0 for some
q <0 unless L is the trivial bundle. Property (2.a.19) follows because by
definition

K, o( X, L,W) =ker(N?W > A?"'W® H(X, L))

which is 0 if p # 0 and C if p = 0. Finally, (2.a.20) follows from Serre duality
and the fact that

J (s nB=[an(sh)
fors € HY(X, L), « € @%(X, E ® gL) and
BERY (X, Ky®E*®(-1—¢q)L),
for then under Serre duality the Koszul complex
S ANPTTWO H(X,E®(q—1)L) > AW H(X, E®qL)

SAPTIWRH(X,E®(qg+ 1)L) > ---

goes to
S AP @ H (X, Ky ® E*® (-1 — q)L)
SANFW* @ H" (X, Ky ® E* ® (~q)L)

SAPTI*@ H (X, Ky®E*® (1 —q)L) > ---
which, tensored with A “™% W and contracting, gives the Koszul complex
s > NERWEPHIY @ H (X, Ky ® E* ® (-1 — q)L)

SNV ® H (X, Ky ® E* ® (—q)L)
SNVl @ H (X, Ky®E*® (1 —q)L) » - --.
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(b) The Gaussian class. Let sy, 5,,- - -,5, be a basis for W C H% X, L) and
€y" * *»€, the dual basis for W*. There is a natural element
Y(X,L,W) € NP W @ HY( X, 24 ® (p + 1)L)
defined by

dim X r
(X, LLW)= 3 2 e N Ne
(2.b.1) S e 0
ds;, 0, ds; A nd
iy dz; 5; a 9z, Zp N A
where z,,- - -, z,, are local coordinates on X. If we regard
5o
5
s=|..
5,
as a section of W* ® L, then
dnX s s
(2b2) YP(X,L,W): 2 S/\BT/\/\BTdZJ'/\/\dZJP
jh"'vjp:l N fP_

A more intrinsic representation of y,( X, L, W) is to let

95,
as=1 . |, dsEW*®L®Q mods,
9s,
where 0s is defined mod s because, if in local coordinates, s* = §aﬁs‘* then -
5% = (0&,p5)5? + £,505°
and thus s transforms as a W*-valued section of 2}, ® L modulo s. Then
(2.b.3) Y,(X,L,W)=5/N3s A+ Nds.
—_———
p times
Under the (noncanonical) identification
(2.b.4) Nw=C
there is an isomorphism

(2.b.5) NEW* = ATk vk
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so that we may consider
(2.b.6) Y(X, L) e N"PW @ HYX, Q7 ®(p + 1)L).
Under (2.b.5), the map
AP S AP e L
is dual to
ANWS AP "W L
so that
tdy, (X, L,W) =0
and thus we obtain an element
(2.b.7) Y,(X,L,W) € %,_N,H(X, Qe LW)
called the Gaussian class of order p of X, L. If p = n, we obtain

(2.b.8) Y=Y, €K, (X, Ky, L,W)

which we call simply the Gaussian class of X, L, or the extrinsic fundamental
class.

Theorem (2.b.9) (Theorem of the Gaussian Class). If W is base-point free, X
is Kdhler and

(2.b.10) dime,(X)=p forsomem >0,
then
(2.b.11) 7,(X, L, W) #0

as an element of X,_, . (X, R, L,W).
Proof. 1f Y,(X, L,W) =0, then

SAISA---Nds=sN\a

for some a € NPW* ® HO(X, Q€ ® pL). If we choose a lifting

(2.b.12) gEW*®Q%x,2%® L)
so g = dsmod s, then

(2.b.13) dg = As,

where

(2.b.14) 4 € @>(x,QY)
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is a representative of the extension class of the first prolongation bundle of L,
and hence of the first Chern class ¢, (L). Wehaves Ag A -+ Ag=s5s AN aso
gAgN--Ng—a=sNE, E€ENT'W®Q(X,Q®pL).

Then taking 9 of both sides, ,
p(dg) NgA - Ag=sADE,
or

pAsNg /N - Ng=5sAJE,.
Thus

pAg A - Ng—JE, = s NE,,

E, € N?72w* @ @% (X, Q4 ® (p — 1)L).
Taking 9 of both sides and rearranging as before, we get
p(p—DsNANANGN--- Ng=35NDE,.
Continuing inductively, we obtain
(2.b.15) PlAN---NA=3JE,,,, E,., €@ '(2%),
p times

from which we conclude
(2.b.16) c(L)" =0 in H?P(X,Q%).

However, as a (1, 1)-form on X, ¢,(L) is proportional to the class represented
by @, of the Fubini-Study form on P(H°( X, mL)*) for any m > 0, and thus
A %c(L) is = 0 pointwise and positive somewhere if dimq,(X) = p. This
contradicts the assumption ¥,( X, L, W) = 0. q.e.d.

Corollary (2b.17). If W C H(X, L) is base-point free, and X is Kihler
then dim @, (X) = dime,,,(X) for any m > 0.

Proof. 1f p = dime¢,(X), then

p+ Ltimes
Yo X, L,W)=s Nos A\ --- N3s = 0.
Thus
(LY =0 in HPYY(X,Qr"")
by the proof of (2.b.9). Hence
dimg,,(X)<p forallm> 0.
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So
dimg,,(X) < dime¢,(X) forallm=>0

while the opposite inequality is automatic.

(c) The Duality Theorem. There are two main results:

Theorem (2.c.1). Let X be a compact complex manifold of dimension n and
L — X an analytic line bundle. Assume

(2.c.2) W C H%X,L) isbase-point free
withdmW =r + 1 and
H(X,(i—(n+1))L)=0, i=1,2,---,n—1,

(2.c.3) A
H(X,(i—n)L) =0, i=1,2,---,n—1.
Then
(2.c.4) Ky ppir(Xs Ko L W) = C
and furthermore, if
(2.c.5) dimg,,(X)=n forsomem >0,

then the Gaussian class is a generator.

Remark. By a generalization of Mumford’s variant of the Kodaira Vanish-
ing Theorem (see [5]), the hypothesis (2.c.3) is implied by (2.c.2) and (2.c.5) if X
is Kahler.

Theorem (2.¢.6) (Duality Theorem). Let X be a compact complex manifold
of dimension n, L — X an analytic line bundle and E — X an analytic vector
bundle. Assume

W C HY X, L) is base-point free
withdimW =r + 1 and
H(X,E®(g—i)L) =0, i=1,2,--,n—
(2.¢.7) ( (¢ =)L) ! SRE
H(X,E®(g—i—1)L)=0, i=1,2,---,n—1.

Then

(2c8) K, (X,E,L,W)* =% (X, Ky ® E*, L, W).

r—n—p,n+1—gq
Under the further assumptions (2.c.3), the duality is given by the cup product map

X, (X, E,L,Ww)®X (X,Ky® E*, L, W)

(2.c.9) U
- r-n,n+1(X’ KX’L’W):C

r—n—p,n+l—gqg

which is then a perfect pairing.
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Corollary (2.c.10). Let X be a compact Kihler manifold of dimension n and
L — X an analytic line bundle. Assume

(1) W C HY%( X, L) is base-point free and let iim W = r + 1,

@) dime,,,(X) = n for some m > 0.
Then
(2.c.11) %p,q(X, Ky, LLW)* =~ %,_n_p,nﬂ_q(X, L,W)

if g=n+ 1. If either n =1 or H" (X, 0,) = 0, then (2.c.11) also holds for
q=n.

Remark. If (1) and (2) hold, we thus conclude the cup product (2.c.9) is a
perfect pairing.

Proof of Corollary (2.c.10). Under our hypotheses, by Mumford’s variant of
the Kodaira Vanishing Theorem (see [5]),

Hi(X,kL)=0 fork<Qandi<n-—1,
and thus by Serre duality
H(X,K;®kL)=0 fork>0andi>0.
Thus if g=n + 1 or, if H"7!(X, 0,) = 0 for ¢ = n, the cohomology hypothe-
ses (2.¢.7) hold, so the Duality Theorem applies. g.e.d.
The main element of the proof of the two theorems is the following result.
Theorem (2.c.12) (The Spectral Sequence for Koszul Cohomology). Let X be

a compact complex manifold of dimension n, L — X an analytic line bundle and
E — X an analytic vector bundle. Assume

W C H°(X, L) is base-point free.

Then for any k € Z, there is a spectral sequence E? 9 abutting to zero with

“(2.¢.13) Ef1= ‘J{f’p,kﬂ,(X, E, L W)
and with maps
dr
(2.c.14) Epa s Eptrartl

Proof of Theorem (2.c.12). Consider the bigraded complex:
(2.c.15) cri=N'wee*(X,E® (k—p)L).

The rows of (2.c.15) are obtained by taking global €*(0, ¢) forms of the
sheaf Koszul complex

S APTWRE® (k—1—p)L>APWOE®(k—p)L

2.c.16
(2.c.16) SAPTWR®E®(k+1—p)L— ---
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which is exact if W is a base-point free linear system. Since C* forms are fine
sheaves, the rows of (2.c.15) are exact.

The columns of (2.c.15) are /\ ?W tensored with the Dolbeault complex.
Associated to this bigraded complex (see [8]) are two spectral sequences with
the same abutment. One of these spectral sequences has as E, term -the
cohomology of the rows, hence is zero. The other spectral sequence has E| term
the cohomology of the columns, hence has

EPi=N7?"WQ®HYX,E®(k+p)L).
The d,’s are just the maps of the Koszul complex, so
Ef9= (X,E,L,W)
and the d,’s go as indicated. This spectral sequence abuts to zero because the
first one does.

Proof of Theorems (2.c.1) and (2.c.6). As a corollary of the theorem just
proved, we see that

dn+l
(2.c.17) rnttgen-t( Xs E, LW)—%X) (X, E, L,W)

p k+p

is defined and an isomorphism provided that

He i goia( X E, LW) =0, i=12-n—1,
3{1’,+,q AX,E,L,W) =0, i=1,2,--,n—1.

In the situation of Theorems (2.c.1) or (2.c.6), the hypotheses (2.c.3) or
respectively (2 ¢.7) imply (2.c.18). Now by (2.a.17) and (2.c.17), we have

0 (X, E,L,W)*=~ (X,K,®E* L, W)

(2.c.18)

Ko n—pnti—q
for Theorem (2.c.6) and, specializing,
Kool X, L W)* =K, 4i(X, Ky, L W)
for Theorem (2.c.1), and by (2.a.16),
Kool X, L, W) =
To see that the cup product map (2.c.9) gives the duality in case both (2.¢.3)
and (2.c.9) are true, let

a& X

r—n-p,n+1—q(X’ Ky®E* L, W)
and let
&ENT"PWRHY (X, Ky®E*® (n+1—q)L,W)
represent «. Because & is holomorphic and ¢1& = 0, we have da = 0, & = 0
and thus tracing through the spectral sequence

dy(eNB)y=and, (B) for BE g'Cp,q(X’ E,LW).
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Thus we have the commutative diagram

(2.c.9)
Ky npmsr—g( X Kx ® B L) @ K2y, 1 (X, K ® B*, LW )" H( X, Ky)
W1®d, 4y Yy
Horpone 1o X Kx ® E*, L W) ® K, (X, E, LW)S %,y o X, K, L, W)

which shows the cup product gives the duality.
Finally, the statement that the Gaussian class is a generator of
K, nep (X, K, L, W) is a consequence of (2.b.9).

3. Computational techniques for Koszul cohomology

(a) A vanishing theorem. We want to prove

Theorem (3.a.1) (Vanishing Theorem). Let X be a compact complex mani-
fold, L - X an analtyic line bundle, W C H%(X, L) a linear subspace, and
E — X an analytic vector bundle. Then

(3.a.2) X, (X, E,L,W)=0 ifh°(E®qL)<p.

Proof. LetP,, P,,---, P, be generic points of X, and choose s, s,,- -
a basis for W so that

L]

(3.23) s{(P) =8,
Ifa € ANPW ® HYE ® gL) we may consider, if dim W = r + 1, that
a € NP @ HY(E ® qL)

and then the condition : Ja = 0 becomes

(3.2.4) Si0iy, iy TS0y gy T S e = 0
Evaluating at P, _, we obtain

r+2—p
(3.a.5) a,.h_,_,,.’H_P(g):O AR CE T SYCEEIN ST

If P, --,P.,, are generic, and if A% X, E®gL)<p, then any a €
H(X, E ® qL) vanishing at p of the points P,,---,P,,, is zero. Thus, by
(3.2.5),

o .
I letr1—p

=0 foralli,, --,i,\,_,

and thusa = 0. q.e.d.
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An application of the Vanishing Theorem which we will need in §3c is
Corollary (3.a.6). Let H — P, be the hyperplane bundle. Then for a, d € Z,
d>0,

(3.a.7) K, o(Py, aH, dH) = 0,

unless0<a<2d—-2anda—d+1<p<a.
Proof. h°(P,, aH) = a + 1 so0 (3.a.2) becomes

K, 0P, al,dH) =0 ifa+1<p.
By the Duality Theorem
(3.a.8) K, 0Py, aH, dH)* ~K,_,_, (P, (-2 — a)H, dH)
and by (3.a.2),
Hyr—pa(Py, (-2 — @)H,dH) =0 if2d —1—a<d—1-p
$0
K, o(P,aH,dH) =0 ifp<a-—d.
Combining these,
(3.2.9) K, o(P,a,dH) =0 unlessa—d+1<p<a
From (3.a.8) and the definition, \\;e have
H,o(P,aH,dH) =0 unlessa=0and2d —2—a>0

$0
(3.2.10) H,o(P, aH,dH) =0 unless0<a<2d—2.

Now (3.a.9) and (3.a.10) together are (3.a.7).
Remark. Corollary (3.a.6) can be rephrased as %p,O(P]’ aH, dH) = 0 out-

side the closed parallelogram:
/ = <
P=28-4d+1 \

N
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(b) The “Lefschetz Theorem”. We wish to consider several variants of the
situation where Y C X has codimension 1, and relate the Koszul cohomology
groups of X and Y.

Theorem (3.b.1). Let X be a compact complex manifold. L — X an analytic
line bundle, Y C X a smooth hypersurface with [Y] = M the analytic line bundle
associated to Y and Ly the restriction of L to Y. Assume

HYX,L— M) =0,

HY(X,qL—M)=0 forallqg=0.

Then there is a long exact sequence

Gb3) Kot (Xo L) > Ky g (Y, Ly) — Hg (X, M*, L)
- %O,q(X7 L)~ o,q(Y, Ly)-0.

(3.b.2)

Proof. Consider the graded S(H( X, L))-modules
B'= @ H(X,M*®qL), B*= D H(X,qL), B =D H Y, qLy).
q=0 g=0 q=0
The hypotheses (3.b.2) insure that we have a short exact sequence of graded
modules 0 - B' » B? - B - 0 and an isomorphism H%( X, L) = H%(Y, L)
from the short exact sequence
0-0y((q—p)L®M*) > Ox((¢—p)L) > 04((¢ —p)Ly) > 0
using the hypotheses (3.b.2). By the long exact sequence for Koszul cohomol-
ogy (1.d.4), we obtain the long exact sequence (3.b.3).
Corollary (3.b.4). If Y = divu, where u € im S*H(X, L) C H(X, kL)
for some k = 2, and
(3.b.5) HY(X,qL) =0 forallqg=> -k,
then

(3.b.6) ‘J{p‘q(Y, L) = ‘}Cp‘q(X, L)® ‘J{p_,,qﬂ_k(X, L).
Proof. We need only see that the map

mukt u

pq k(X L)_—> p,q(X7L)

is the zero map, which follows from (1.b.11). g.e.d.

For a hyperplane section, we have

Theorem (3.b.7). Let X be a compact complex manifold, L — X an analytic
line bundle, Y C X a connected hypersurface in the linear system |L| and let Ly
denote the restriction of L to Y. Assume
(3.v.8) HY(X,qL)=10 forallqg=0.
Then X, (X, L) =K, (Y, Ly) forallp, q.
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Proof. We have an exact sequence
0-HX,0)>H%X,L)-> H(Y,Ly) -0
and thus
APHO(X, L) = { APHYY, Ly) ® APTIHOY, Ly), p=>1,
C, p=0.
We thus have a short exact sequence of graded S(H°( X, L))-modules
0-B'-B>*>B-0,
where
B'=@H(X.(¢— L), B*=DH(X,qL), B =D HY.qLy).

q=0 q=0 q=0

We thus obtain a long exact sequence

(3.b.9) T %P,q—P—l(X’ L)~ %P,q"‘p(X’ L)
= Hpgmp (Vo Ly) @ Ky (Vs Ly) = Ko p (X L) = -
by (1.d.4). Now by (1.b.11), the maps
f}{p’q_p_l(X, L)- f}{p,q_p(X, L)
are zero, so we obtain
(3 b 10) g{p,q—p(}” LY) ® g'{;p—l,q—p(}” LY)
= f}ipvq—p(X’ L) ® f}Cp—l,q—p(x’ L)

for all p, g. For p = 0, we obtain
Ho (¥, Ly) =%, (X, L)
and forp = 1,
%l,q(Y, L,)® cJ{O’q(Y, Ly)= cJ{I,q(X, L)® cJ{O,q(X, L)
and thus

%l,q(y’ LY) = %1,4()(5 L)

and, continuing inductively, obtain the theorem.

(c) The ‘J{pyl Theorem. This result has the most delicate proof of any in this
paper. Once it is established, a variety of interesting geometric results—e.g. the
Enriques-Petri-Babbage Theorem on the ideal of a canonical curve—follow
from it and the Duality Theorem.
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Theorem (3.c.1) (The %p’l Theorem). Let X be a compact complex manifold,
L - X an analytic line bundle with h°(X, L) = r + 1 and let m = dim ¢, ( X).
Then

WK, (X, LYy=0forp>r—m

(2) 36, mi(X, L) =10 unless @, ( X ) is an m-fold of minimal degree.

(3) K,— - 1.1(X, L) = 0 unless either deg o (X)<r+2—mor <pL(X) lies
on an (m -+ 1)-fold of minimal degree.

Remark. In [5], we proved a preliminary version of this result, obtaining (1)
and (2) as above, but getting (3) with a much worse bound for deg ¢,( X). A
del Pezzo surface X C P, has degree 9, does not lie on a threefold of minimal
degree, and ¥, ,(X, L) # 0 by the theorem in the appendix. Note that
deg ¢, (X) =r + 2 — m in this case. Thus the bound in (2) cannot be im-
proved.

Proof. Let

a € N?HY (X, L)® HY( X, L)
represent a nonzero class in T}Cp,l( X, L). Then

tla € APT'HO(X, L) ® L(g,(X)).

Regarding

(3.c.2) tda € Hom( A ?7'HO(X, L)*, L(p,(X)))
it is proved in [5] that '
(3.c.3) dim(im(¢la)) = (P ;’ 1).

From this and Castelnuovo’s Lemma, one can prove (1), (2), and also (3) with
a weaker conclusion about deg ¢, { X). Our strategy here is to use a strengthened
version of the Castelnuovo’s Lemma. We need some further notation to state
it.
Let V be a vector space of dimension 7 + 1 and
P, -, P, € P(V*).
We set

(3.c.4) B, = im| H'(P(V*), gH ) — éHO(P,.,qH) ,

where H — P(V*) is the hyperplane bundle. Then B = @ ., B, is an S(V)-
module, since V =~ HY(P(V*), H). We will then denote

(3.c.5) %, o( P, P) =K, (B,V)
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using the definition of §1a. We then have
Theorem (3.c.6) (Strong Castelnuovo Lemma). Let Py, P,,---,P, € P, be
points in general position. Then

{Pl: Pz,-.-,Pdlena] “’%,_ll(Pl,Pz,“',Pd)?éO.
rational normal curve ’

Remark. By (3.c.3), one has that
%r—l,](Pla' '.',Pd) #(0 - Pl" . .’Pd

lie on at least (5) linearly independent quadrics. Thus when d = 2r + 3, the
Strong Castelnuovo Lemma does not say any more than the usual Castelnuovo
Lemma. If d < r + 3, any d points in general position lie on a rational normal
curve. However, when d lies in the range r + 4 < d < 2r + 2, then (3.c.6) does
say something new, and this is what allows us to obtain the bound on
deg ¢,(X) in (3) of the K, ; Theorem.

Proof of (3.c.6). Theideal 9. of a rational normal curve C in P, has minimal
resolution by an Eagon-Northcott complex

(3c7) 0- D Op(-r) > - > D Op(-3) > D Op(-2) » %~ 0.
(=10 25 (%)

By Theorem (2.a.15), we conclude
K, 1(C H) = C.

If P,,---,P,lie on C, then I,(C) C I,(P,,---,P,) and so all syzygies, syzygies
among syzygies, etc. of C map to syzygies, syzygies among syzygies, etc. of
P,,- - -, P, By degree, any syzygy of depth p and weight p + 1 is primitive, so
the map

%r«l,l(c’ H) - %r-—l,l(Pl" ~,Py)

is injective. Thus
%r—l,l(Pl" : "Pd) #0

if P,,---,P, lic on a rational normal curve C, which proves one direction of
(3.c.6).

Conversely, assume we are given Py,- -, P, with X _, (P,---,P;) 0. If
d < r + 3, we are done, as any r + 3 points in general position lie on a rational
normal curve. If 4 = r + 3, let C be the unique rational normal curve contain-
ing P,-- -, P, 5. As before, let

B, = im( HO(P,, qH) ~ H(P, + -+ +P, 13, qH))
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and set
B=@B, A4A=@HCqH),
qEZ qEZ
R= @ (ker(HY(C,qH) - H(P, + -+ +P,,;, qH))).
qEZ .
Note
R~ H(C,0.(qH — P, — ----P,.;)).
qEZ

Since rational normal curves are projectively normal, the restriction map
A — B is surjective, and thus we have a short exact sequence of graded
S(V )-modules 0 > R - A4 - B - 0. Thus by (1.d.4) there is a long exact
sequence

(3C8) T %r—],](A> V) - %r-l,](B’ V) - %r—],l(R3 V) -
Now '

K aa(RV) = %r—2,2(c5 Oc(-Py = -+- —P,3), H).
If P, is the underlying projective line of the rational curve C, and L — P, the
hyperplane bundle for P;, then H ~ rLand O(-P, — - -+ — P, ;) =~ —(r + 3)L.
Thus

%r—Z,Z(R’ V) = %r—Z,Z(Pl’— (r+3)L, rL) = %r—Z,O(PI’ (r—3)L, "L)~
We can now invoke (3.2.7) to conclude that X, _, ,(R, V') = 0. Thus

SKr—l,i(c’ H) - c‘}{:r*—l,l(Pl?' : '9Pd+3)
N)
%r—l,l(Pl" : '5Pd)-

Now if a € K,_, (P, --,P,) then it is the image of & € K,_, (C, H). By
(3.c.3), dimim(¢J&) = (5) and thus im(:d&) = I,(C). However, the quadrics
in im(¢1&) all contain P,,- -+, P,, so

IZ(C) gIZ(Pl?" '5Pd)’

Since a rational normal curve is cut out by quadrics, we conclude P,,- - -, P, € C
which proves the lemma. g.e.d.

We now return to the proof of Theorem (3.c.1). If T}Cp,l( X,LYy#Olet7mbea
generic ( p + 1)-planein P.. Then

%p,,(w N (pL(X), H) #0
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since a syzygy restricted to a generic linear space does not vanish. Now by the
Strong Castelnuovo Lemma,

7 N ¢, (X) C arational normal curve.
In particular,
dm(z N (X)) =m—r+p+1=<1
sop < r — mproving (1). If p = r — m, then
deg(m N (X)) <r+1-—m
and thus
degop, (X)<r+1—m

which proves (2).
If

« € NT"TIHOY(X, L) ® HY(X, L)
represents a nonzero class in K,_, _, (X, L), let ¥ = Var(im(:1a)). If 7 is a
(r — m)-plane in P, corresponding to an (» — m + 1)-dimensional subspace
W C H°(X, L)*, then we define
a, €E NI @ W
to be the image of & under the maps dual to W — HO(X, L)*. Then

im(tde)|, = im(cda,)

and thus
aNY= Var(im(LJ a,,)).

By the proof of the Strong Castelnuovo Lemma, for = generic, and d = r — m
+ 3,

Var(im(:la)) = C,,
where C_ is the rational normal curve whose existence is guaranteed by the
lemma. Thus either deg @, (X)<r—m+ 2 or Y N 7 is a rational normal

curve for a generic 7. In the second case, Y is a variety of minimal degree. This
proves the X, ; Theorem. g.e.d.

4. Applications

(a). The Theorem of the Top Row. In [11], Mumford proved that for a
smooth curve of genus g and a holomorphic line bundle L — C of degree d,
that @,(C) is projectively normal if 4 = 2g + 1. He also proved the ideal of
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¢,(C) is generated by quadrics if d = 3g + 1; Saint-Donat and Fujita showed
@;(C) is cut out by quadrics if d = 2g + 2.

Theorem (4.a.1). Let C be a smooth curve of genus g and L - C an analytic
line bundle of degree d. Then:

(DX, (C,LYy=0forq=3ifh(L)=0.

2 T}Cp,z(C, LY=0ifd=2g+1+p.
Thus:

(1) 9,(C) is projectively normal if d = 2g + 1.

(2) The ideal of @;(C) is generated by quadrics ifd = 2g + 2.

(3) The syzygies among the quadrics in the ideal of @;(C) are generated in
weight 3ifd = 2g + 3, etc.

Proof. By the Duality Theorem,

T}Cp,q(C, L)y* ~ %r—l—p,Z—q(C7 K,L).
Now
W(L)Y=0-hr"(K—-(¢g—2)L)=0 forg=3
which proves (1). If ¢ = 2, by the Vanishing Theorem,
T}C,_l_p’o(C, K,L)y=0 ifh(K)<r—1—p.
By Riemann-Roch, r = d — g. So
K,2(C,L)=0 ifg<d—g—1-p
or
X,.(C,L)=0 ifd=2g+1+p.

The remaining results are just reinterpretations of the first two. q.e.d.
Theorem (4.a.1) is precise, due to the following result of F. Schreyer [12].

(4.22) For each genus g, there exists a number dy(g) so that if
T d=dy(g),
K,(C,L)#*0 ifr—1=p=>r—g

Thus, when d is large, we have the following picture of a minimal free
resolution for the ideal sheaf of ¢, (C):

00 K, - K., 00 - 0

4.a.3
(4.2.3) 0 0 H_,, H_,, Ko Ky

where the entries marked by dots in the top row are nonzero.
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Theorem (4.a.4) (Theorem of the Top Row). Let X be a compact Kihler
manifold of dimension n and L — X an analytic line bundle with h°( X, L) =
v + 1. Then for L sufficiently positive,

(DX, (X, Ly=0forqg=n+2 and

QXK, (X, Ly=0forp<r—n— h%"( X).

Note. By L sufficiently positive, we mean that there exists a bundle L,- so
that the theorem is trueif L ® L} = 0.

Remark. Once again, Schreyer’s result gives that

(4.a.5) g{p,nH(Xs LY#0 forr—n=p=r+1—n—h""(X)

if L is sufficiently positive. Thus the resolution of the module @ g0 H %X, qL)
has the picture

0 0 ‘j{r——n,n+1 T g{r+1—h"~°(X),n+1 00 - 0

00 X_,, Ho.n
(4.2.6) ’ ’

0 O ‘j{r—n,l (}CO,I

where by Schreyer’s result the indicated A"°(X) entries in the top row are
NonNzero.
Proof of (4.a.4). By taking L sufficiently positive, we can arrange that | L| is
base-point free and
i=0and g <0,
Hi(X,qL)=0 if{l<i<n—1, g#0,
i=n, ¢g>0,

For g = n + 1, the cohomology hypotheses of the Duality Theorem are satis-
fied, so
K, (X, L) ~%
For ¢ = n + 2, we get zero since
(X, Ky—(g—(n+1))L)=0.
Forg=n+ 1, we get
Koy o X, Ky, L) =0 ifh%(Ky)<r—n—p

by the Vanishing Theorem.

(b) The Arbarello-Sernesi module and Petri’s analysis of the ideal of a special

curve. Petri and later Arbarello and Sernesi {2] studied the ideal of a special
curve by looking at generators and relations of

D H(C, K ®4qL)
qEZ

(X, Ky, L).

r—n—p,n+l—gq
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as an S(H(C, L))-module. We will generalize their results both by dropping
the requirement that L be special and by extendmg their results to higher
dimensions.

Definition (4.b.1). For X a compact complex manifold and L - X an
analytic line bundle, the Arbarello-Sernesi module of X, L is

@D H (X, K, ®qL)
q€Z

viewed as an S(H°( X, L))-module.

Theorem (4.b.2). Let X be a compact Kihler manifold of dzmenszon n and
L - X an analytic line bundle with h°(X, L) = r + 1. Assume |L| is base-point
free and that dim @, ;( X) = n for some k > 0. Then

(1) The Arbarello-Sernesi module of X, L is generated in degree < q if

(Ayg=n—+1;

(b)g=nandr #n;

(©) g=n—1; either dimo,(X)=n—1 and dego (X)=r+4—n or
dim ¢, (X) = n; and ¢,(X) does not lie on an n-fold of minimal degree; and
eithern=1o0rh" Y X,0,) =0

(2) The relations among generators of the Arbarello-Sernesi module are gener-
ated in weight < q if

(@Qg=n+2;

byg=n+landr#n+1;

(©) g =n; dimo(X) = n; either n =1 0or " (X, 0,) = 0; degp,(X) =r
+ 3 — n; and ¢, ( X) does not lie on an (n + 1)-fold of minimal degree.

Proof. By the Duality Theorem’s Corollary (2.c.10),

K, X, Ky, L)* =% (X, L)

r—n—p,n—1-—¢g
if g= n + 1, and also for ¢ = n if eithern = 1 or A" '( X, 0,) = 0. Since

X (X,L)=0 forg=n+2

r—n—p,n+1—gq

and

K (X,L)=0 forg=n-+ lunlessp=r—n,

r—n—p.,n+tl—gq
we obtain (1a), (1b), (2a), and (2b). Since

S‘Co,n(X, K,, L)* ~ cJf,_n,l(X, L)
%l,n(X’ Ky, L)* = 3'Cr—n—l,l(X’ L),

we obtain (1c) and (2¢) from the ¥, | Theorem (3.c.1).
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Remark. We also obtain results about all the syzygies of the Arbarello-
Sernesi module from the fact that, under the hypotheses of the theorem,

(4.b.3) K, (X, Ky, L)=0 forg=>n+2,anyp,
(4b.9) K, el X, Ky, L) =0 forp#r—n

as stated above.

(c) The canonical ring of a variety of general type. Since writing [5], our
point of view has evolved somewhat. It is now easier to obtain those results,
and they may be extended to syzygies. ’

Theorem (d.c.1). Let X be a smooth n-fold of general type. Assume that | K y|
is base-point free. Then

(D K, (X Kx)* = Kpox, ky—nr 1+ ppnt2—o( X Kx) if g=n + 2orif g =
n+land H*"'(X,04) = 0. ,

@K, (X, Ky)=0ifg=n+3.

3
C ifp=h%X,Ky)—(n+1),
fj{p,n”(x, KX) = { ifp - ( x) (n )
0  otherwise.
4
CHXKo=n=1 it o (X) is an n-fold of minimal degree,
Kot 1( X Kx) =10 if ok ( X) is not on an n-fold of minimal

degree

provided in both cases that H"}(X,0,) = 0 and dimgi( X) =n — 1.

() KX, Ky) =0 if dimog(X)=n, H"(X,04) =0, and ¢x(X)
does not lie on an (n + 1)-fold of minimal degree and deg px( X) # h°(X, Ky)
—norh®%X,Ky)—n+ 1.

Proof. (1)1is a consequence of (2.c.11), and (1) implies (2). Since

C ifp=0,
%p,O(X; Ky) = { p

0 otherwise,
we obtain (3). The ¥, | theorem implies (4) and (5). q.e.d.

Note. In case n = 1, the cohomological hypotheses of the Duality Theorem
are vacuous, so in that case the hypothesis H"~'(X, O,) can be eliminated
wherever it occurs; thus, one recovers the Enriques-Babbage-Petri theorem.
Our theorem is an extension of a theorem of Arbarello and Sernesi (see [2]).
We also note that if ¢, is birational to its image, then in (5) the possibilities
deg px(X) = A% X, Ky) — n or K% X, Ky) — n + 1 can be eliminated, as for
n > 1 these are rational varieties, and for » = 1 they are rational or elliptic.
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(d) The H' Lemma, a theorem of Kii, and a splitting lemma.

Theorem (4.d.1) (The H' Lemma). Let X be a compact complex manifold,
L — X an analytic line bundle, W C H%( X, L) a linear subspace and E — X an
analytic vector bundle. Assume:

(1) The base locus of W has codimension = 2.

Qr(X, E®2L) < dimW — 2.

Then the map
(4.d.2) H(X,E)» W*®H(X,E®L)
induced by the cup product map is injective.

Proof. The kernel of the map (4.d.2) is just K}, w.ol X, E, L,W). Let U
be a sufficiently fine open cover of X and let

@4(Q, E ® kL) = gth Cech cochains of 9 for E ® kL.
If we take the bigraded complex

18 18 1e

0 - C(E) - wW*®CY(E®L) - AN'W*®C(E®2L) -
18 18 18

0 > CYE) - w*®CYNE®L) - ANA*W*®CNE®2L) -
1 1 1
0 0 0

then we obtain two spectral sequences 'E?9, "EP9 with the same abutment
(see [8]). The rows are exact at the first term automatically and at the second
term because the base locus of W has codimension = 2. Thus

"E}9=0 and "E}""=0 forallgq.
Hence

"EX9=0 and "EL9=0 forallg.
Thus, since ‘E, ”E have the same abutment, 'E2' = 0. On the other hand,

'Ef" = Kmw-p (X, E, L, W) forallp,gq.

We conclude that

/Eé),l d; /E22,0

1 U
clﬁmw,o(X’E»L’W) %c(l)imw-i’-al(X’E’L’W)

is injective. Now

Ko w—22(X, E, L,W) =0
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by the Vanishing Theorem (3.a.1) and the hypothesis A°(X, E ® 2L) < dim W
— 2.5
Haimw.o( X, E, L,W) =0

and (4.d.2) is injective. q.e.d.
Remark. In Theorem (4.d.1), it is clear from the proof that we may replace
hypothesis (2) by
@) Ko w-1(X, E, L,W) = 0.
Furthermore, if W is base-point free, (4.d.2) is injective if and only if (2) holds.
Corollary (4.d.3). Let X be a compact Kihler manifold of dimension n. If
V Ky | is base-point free, then the derivative of the period map in
Hom(H"(X), H"™ (X)),

(4.4.4) H'(X,0,) SHY(X, K)* ® H'(X,95)

is injective if and only if
(4.4.5) Hoox, kp—-21( X, % 1, Kx) = 0.
Proof. This follows from the remark.
Corollary (4.4.6). Ler X be a compact Kihler manifold of dimension n. If the

base locus of | K | has codimension = 2, then (4.d.4) is injective, and hence the
Local Torelli Theorem holds for X, provided

Heim W—Z,\(X’ 25 ' Kx) =0.

Proof. This follows from the remark following the proof of Theorem
4.d.1). qed

Theorem (4.d.7) (Improvement of the H' Lemma). Let X be a compact
complex manifold, L, - X analytic line bundles, i=1,---,k, L=L,® L,
® --- ®L, and E - X an analytic vector bundle. Assume that for alli = 1,- - -k,

(1) the base locus of | L;| has codimension = 2, and

(Dh(X,E®L, ®---®L,_,®2L) < h%(X, L,) — 2.Then the map
(4.d.8) H'(X,E)->HYX,L)*®H'(X,E®L)

induced by cup product is injective.
Proof. By the H' Lemma, the maps

H(X,E®L,®---®L,_|\)>HYX,L)*®H(X,E®L,®---®L))
are injective. Thus, if n € H'( X, E) there exists s, € H(X, L,) so
ns;, #0 inHYX,E®L))
and s, € HY X, L,) so
755,70 inH(X,E®L ®L,)
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and so on inductively, until

N5, 8, #0 inH'(X,E®L).
Since

518, -5, €EHYX,L,®---®L,)~HX, L)

we are done.

Remark. We can replace (2) by the hypothesis

Q) WX, E®L®L)<hY(X,L)—2,i=1,--,k,
since if s; € HY(X, L)), s; # 0, for each j > i, then multiplication by s, |, - -, 5,
gives an injection

HY(X,E®L ®---®L_,®2L)>H(X,E®L®L,)

SO
W(X,E®L,®---®L,_,®2L)<h"(X,E®L®L,).

Corollary (4.d.9). Let X be a compact Kdihler manifold of dimension n, and
assume Ky~ L, ® --- ®L,, where L, » X is an analytic line bundle. Assume
foralli=1,2,---,k that:

(1) The base locus of | L;| has codimension = 2.

Q) r%AX,0,®L,®---®L_, ®2L)<h%X,L)— 2
Then the map

HY(X,0,) 3HY(X, Ky)* ® H'(X,25")

is injective and thus the local Torelli Theorem is true for X.

Note. By the remark above, hypothesis (2) can be replaced by

QY R(X, Q'O L)<h(X,L)—2.

In this form, the result is due to Kii [10], who derives from it the Local
Torelli Theorem in a number of cases. This approach to Local Torelli was also
used by Lieberman, Peters, and Wilsker.

Definition. An exact sequence 0 —» E —» F - G — 0 of analytic vector bun-
dles on X splits on sections if the map H°(X, F) » H°( X, G) is surjective.

Corollary (4.d.10). Let X be a compact complex manifold, E — X an analytic
vector bundle and L — X an analytic vector bundle. Assume:

(1) The base locus of | L | has codimension = 2.

QAA(X,E®LY<h’(X,L)—2.

Then any analytic extension 0 - E - F - L — 0 of E by L splits on sections if
and only if it splits analytically,i.e. F~ E @ L.

Proof. If F splits, then automatically it splits on sections. Let us show the
converse. Let e € H(X, E ® L*) be the extension class of F. If F splits on
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sections, then
eE€kerH(X,E® L*) > H(X,L)*® H'(X, E)
SO
e € Hyox, 1y X, E, L).
By the H' Lemma,
e=0 ifh%X,E®L)<h’(X,L)—2.
But
e=0oF=~FE®L analytically.

Remark. Corollary (4.d.10) remains true if we replace the hypothesis (2) by
(2 Kpoex, 1y—21(X; E, L) = 0.
There are two refinements of (4.d.10).
Corollary (4.d.11). Let X be a compact complex manifold,
0O-E-F->L-0
an exact sequence of analytic vector bundles on X with L — X a line bundle and
let

W =im(H°(X, F) > H°(X, L)).

If
(1) the base locus of W has codimension = 2,
Q) h%X,E® L)< dimW — 2,
then F ~ E © L analytically.
Corollary (4.d.12). Ler X be a compact complex manifold, and

(4.4.13) 0—-E—-F->mL~-0, m>0,

an exact sequence of analytic vector bundles, with L a line bundle. Assume;
(1) The base locus of | L | has codimension = 2.
QRr(X,EQL)<h™X,L)— 2.
Then the sequence (4.d.13) splits analytically if and only if it is split on sections.
(e) The H° Lemma.
Theorem (4.e.1) (The H® Lemma). Let C be a smooth curve with L - C,
M — C analytic line bundles. Let W C H(C, L) be a base-point free linear
subsystem. Then the multiplication map

(4.2.2) We® H(C,M) - H(C,L®M)
is onto if
(4.e.3) R(C,M® L") <dimW — 2.
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Remark. For dim W = 2, this is just the base-point free pencil trick.

Corollary (4.e.d4) (The Explicit H® Lemma). Let C be a smooth curve of
genus g, and L » C and M - C analytic line bundles. Assume that deg L <
deg M and that | L|is base-point free. If either

(4.e.5) deg L + deg M = 4g + 2

or

(4.0.6) degM =2g+ 1, degL=2g

then the multiplication map

(4.e.7) HYC, L) ® HY(C, M) » HY(C, L ® M)

is surjective.

Remark. This improves a result of Mumford [11] that deg M = 2g + 1 and
deg L = 2g imply (4.e.7) is surjective.

Proof of (4.e.1). We want to show X, (C, M, L, W) = 0. By the Duality
Theorem, :

Ko (C M, LW =K, (C,Kc®M™, L, W),
where dim W = r + 1. Now by the Vanishing Theorem, we are done if
R(C,Kc®M'®L)<r—1
or, equivalently,
R(C,M® L") <dimW —2. ged.

Proof of (4.e4). If K'(C, M ® L") = 0 we are done by (4.e.1), so assume

M ® L' is special. Now
W(C, M®L')=g—1+degL —degM+ h°(C,M® L™").
| So we are done if
g—1+degL—degM+r(C,M® L)< h®(C,L)—2

or, equivalently, if

g—1+degL—degM+h’(C,M® L)< -1—g+degL+h(C,L)
which simplifies to

(4.e.8) 2g+h(C, M ® L") <deg M + h'(C, L).

If B%(C,M ® L) =0 we are done, as in this case we need only show
2g < deg M + h'(C, L) and we are given
2degM =degM +degL=4g+ 2
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so deg M = 2g + 1. Thus, we are reduced to considering the situation

R(C,M®L')#0 and A(C,M®L™"')#0.
Now, by Clifford’s Theorem,

R(C,M® L) —1<i(degM — deg L).

Now (4.€.8) would follow if we knew

2g+ 1+ 4(degM —deg L) <deg M + h}(C, L)
which is equivalent to

2g+ 1<i(deg M+ deg L) + hY(C, L)

which follows from (4.e.5). In the case of (4.e.6), deg(M ® L) =1 so
h%(C, M ® L") < 1 and 50 (4.¢.8) becomes

2g+ 1<degM+ h'(C, L).

This follows from (4.e.6) and completes the proof of (4.e.4). q.e.d.
(f) A holomorphic representation of the H”°? groups of a smooth variety.

Theorem (4.£.1). Let X be a smooth projective variety and L — X an analytic
line bundle. If L is sufficiently positive, then

Hq(X, Q/{z) = g{:h()(x’ L)—q—l,q+1(X’ Qf\’” L)'

Remark. This expression for the H?'¢ groups has some affinity with the
Poincaré Residue. We say the representation is ‘“holomorphic” because it is
entirely in terms of H®’s of analytic bundles. The term “L sufficiently
positive” has the same meaning as in the note to Theorem (4.a.4).

Proof. For L sufficiently positive, | L] is base-point free and

H{(X,24®qgL)=0 forl<i<dimX,q>0.
Thus
HY(X, Q%) = S{:}?O(X, L),O(Xa g, L).
We argue inductively that for2 <r < g,
d =0 onHX,Q%),

imd, =0 inHjoy -y ,1(X, 0%, L)
because HY " X,Q2®rL)=0 and H NX,22®(g+ 1 —r)L)=0.
Further,

dq+l v
Hq( X, 9)’?)_’%}?"(1\: Ly—1—1,q+ 1(X’ 9)’}, L)

must be an isomorphism, as the spectral sequence abuts to zero and alt further
d,’s are zero because they run out of room.
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5. Open problems and conjectures

The first conjecture we would like to formulate is
Conjecture (5.1) (Noether-Enriques-Petri Conjecture). Let C be a smooth
curve of genus g. Then

%p,l(c’ KC) #0o

hasagiwithd<g—1,r=1l,andd—2r<g—2—p.

Remarks. (1) The direction « of the conjecture is proved in a joint appen-
dix with R. Lazarsfeld that follows this paper.

(2) When p = g — 2, this conjecture is Noether’s Theorem; when p = g — 3,
it is the Enriques-Petri-Babbage Theorem.

(3) By the Duality Theorem, a minimal free resolution of E‘;W( o for C
nonhyperelliptic has the picture

%g—2.3 0 0 . 0 0 - 0 0 N
52) ;
( ) %g—3.2 . . %,g_z_pml 0 0 0
0 0 K, . Kan Fia
where
(5.3) Prax = max{pﬂfp‘l(c, K.)# 0}.
Note
K, (CK)* =K, 5,5 (C, Ke).
The conjecture states that p,, = g — 2 — v, where

(5.4) Vmin = min{d — 2r|Chasag;withr > landd < g — 1}.

(4) From (5.2), it is clear that we must have p.,. =g — 3 — P SO
Prmax = (8 = 3)/2.80

- (g - 3)/2’ g odd,
(55) Prmax = {(g —2)/2, geven.

Since every curve of genus g has a g[‘(g+3) /21

Ymn <[(g +3)/2] —2=[(g — 1)/2].
Then

] 83 if g is odd,

if g is even.
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This is consistent with the Noether-Enriques-Petri Conjecture. It is natural to
conjecture:
Conjecture (5.6). For a generic curve of genus g,

_ (g_3)/2s godd,
(5-7) pm“_{(g—Z)/Z, g even.

’

A problem related to the Noether-Enriques-Petri Conjecture is the following
question, which is a slight modification of a conjecture of J. Harris and D.
Mumford.

Conjecture (5.8) ( Harris-Mumford Conjecture). Let S be a smooth K — 3
surface, L — S an ample line bundle. Then v, (C) is constant for all smooth
C g|L|. .

Remarks. (1) Donagi has constructed an example S, L where there exist
C,, C, €] L|so C has a g}, but C, does not. However, all C €| L| have either a
gl or a g2. Donagi has some partial results on this conjecture.

(2) The Harris-Mumford Conjecture would be a corollary of the Noether-
Enriques-Petri Conjecture. For if C €|L| is smooth, then by the Lefschetz
Theorem (3.b.7) and the adjunction formula

Kc=Ks® Llc=L|

we have
X, (C.Ke)=K, (S, L).
Thus
(5.9 Pmax(C) s constant for smooth C €| L] .

If the Noether-Enriques-Petri Conjecture is true, then
Vmin(c) =8 2- pmax(c)
so this is also constant.
A problem intimately related to the Noether-Enriques-Petri Conjecture is

Problem (5.10). Generalize the X, | Theorem.
Remarks. We would like to be able to say

(5.11) K, (X, L)#0 < ¢, (X) lieson a member of some class
’ of varieties of low degree.

For p = h°( X, L) — dim ¢, (X) — 2, this is covered by the %Cp,] Theorem. For
p=1
K, (X,L)#0 o g, (X) lies on a quadric.
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A natural starting place might be to try to generalize the Strong Castelnuovo
Lemma (3.c.6). For example:

Problem (5.12). For P, P,,---,P, € P, points in general position, is it true
that

Koy (P1,--+,P;) # 0 = Py, P, lie on a surface of minimal degree.

The direction « is known, and the case r = 4 would appear to be the first
unknown case for the direction — .

The Theorem of the Top Row (4.a.4) gives a description of the top row of
the X, (X, L) for L sufficiently ample. This might generalize

Problem (5.13). On a smooth n-fold X, if L — X is a sufficiently ample
analytic line bundle, which X, (X, L) must be zero?

A variant of Problem (5.13) would be to take L —» X an ample bundle and
ask which ¥, (X, kL) must be zero when £ is sufficiently large.

A potentially rich area of study is

Problem (5.14). What is the variational theory of the X, (X, L)? What do
they look like for X generic or for X and L generic?

Here is a special case of (5.14). If a general curve C of genus g has a g} which
is special, then if L is the g7,

(5.15) HYC,K.—2L)=0 (see[l)),
(5.16) ker(HO(C, L)® HY(C, K. — L) HO(C, KC)) =0 (see[9]),

where (5.15) follows from the study of the Gaussian system of C, L and (5.16)
is Petri’s Conjecture. By the Duality Theorem,

%, (C.L)=K,_,_,,_(C,Kc, L)

50 (5.15) and (5.16) are equivalent to

(5.17) ‘JCp,q(C,L) =0 forg=4,

(5.18) H,_25(C, L) =0.

A consequence of these is that

(5.19) ‘}CPJ(C,L) =0 forp=<r—2.

Combining this with the Duality Theorem, we obtain

HYC,L) ifp=r—1

5.20 K, ,(C, L) = ’ ’
(520 pa(C: L) {0 ifp#r—1.

This gives a complete description of the top row of the K, s in this case. It
would be interesting to know what the other ¥, ’s look like in this situation.
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Problem (5.21). When X, L is projectively normal, how do the Koszul
cohomology groups ‘J{pyq( X, L) relate to the stability of X, LT Can one apply
them to moduli question?

An example of what might happen in the second half of (5.21) is Sernesi’s
work on moduli of curves of genus [13]. ,

The Gaussian class or extrinsic fundamental class of §2b and the representa-
tion of the Hodge groups in §4b seem quite hopeful.

Problem (5.22) (suggested by P. Griffiths). Work out the relative theory of
the extrinsic fundamental class for a pair of varieties X C Y.

Problem (5.23). Can the representation of the Hodge groups in §4d be used to
compute the derivatives of normal functions (see [7])?

A final question is

Problem (5.24). Can Koszul cohomology be used to make further progress on
the Local and Degree One Torelli Problems?

There are some hopeful signs in this direction-the work of Kii described in
§4c, Donagi’s work on Degree One Torelli for smooth hypersurfaces in Py, (see
[4]), and a recent paper of the author’s [6].

Appendix: The nonvanishing of certain Koszul cohomology groups
MARK GREEN & ROBERT LAZARSFELD

Theorem. Let X be a compact complex manifold, and L, M|, M, analytic
line bundles on X with L ~ M, ® M,. Assume

(X, M)=r,+1, r=1, i=1,2.

Then cJC,IJF,Z_LI(X, L)y+#0.
Corollary. If a smooth curve C of genus g has a giwithr =l andd < g — 1,
then

%g—(d—2r+2),1(c’ Kc) #0.
Remark. In terms of the language of §5, the corollary is equivalent to
Prmax =8 ~ 2 7 Pyip-

Equality would be the Noether-Enriques-Petri Conjecture.
The Corollary follows from the Theorem by letting M, be the g/, M, be the
residual g; 74,97, and L = K.

Proof of Theorem. Let
D, €L — M|, D, €|L — M,|



KOSZUL COHOMOLOGY 169

so D, + D, €|L|. Letting D, denote the linear span of D, pulled up to C"*',
etc., we have the following picture in C’*! = HO( X, L)*:

o S—
Dl+D2=cr

cr-rl/

r-rl-r2 ‘r-r2

c

Choose a basis sq,--+,5,,, for H(X, L) with dual basis ey, - -,e,,, for
HY(X, L)* so that
€ e, is a basis for D,

€, +1," " "€, Isabasis for D,,

€115 " "€, isabasisfor D; N D,.

Note
Dl: {sﬂzsr—r|+1: ”':sr:O}’
D2: {s():sl: -..:srzzo}.
Now let
r=n r
1= 2 e,®s, s=2¢0®s,.
i=1 i=0
Consider

r

a=1Ne, N Ne, =cANT(D 0 D).
While ¢ € IZ ® H(X, L) we see that « involves only s, - *,5,, and these are
all zero on D,. Thus
a € N"TTID @ HY( X, L—[D,]).

Furthermore, ¢ = s on D, because s,_, ;= -+ =5, = 59 = 0 on D,. Thus

sAa € NP HY(X L)* @ HY(X, L® (L — [D,] — [D,])).
Since L ~ [D,] ® [ D,] we have

sANa€ NP HO(X, L)* © HO(X, L).
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Further, as s /\ (s N\ a) = 0 we have

sha€X, , (X, L)

rtry
using the isomorphism
/\ r—rl—-rz-f-ZHO(X’ L)* ~ A r1+r2—1HO(X, L).

It remains to show that s A a is nontrivial in Koszul cohomology. Assume
on the contrary that

sAa=sAB, Be NI (X L),

Then
B=a=uNe, . N Ne._, mods.
Thus
sNeANB=0 forn,+1<j<r—r.
So
25 NeAB=0 forr,+1<j<r—r
i=0
and thus

eNe, ANB=0 forall0<i<r,n+l<j<r—r.
If r—r,—r,+2<r+1, that is, if r, + r, = 2 which is true by hypothesis,
we may conclude
ej/\,BZO forn,+1<j<r—r.
Thus

B=cNe N Ne for some c € H( X, L)*.

r—n
Now returning to the equation s A a = 5 A 8 we get
sA(e—c)Ne A Ne,_, =0.

Since
(=) Aepey Avee Aoy, € ATTHITD U 6)

r—r
we conclude s €D, U c. Thus /_, s;e; €D, U c and hence e; €D, U c for all
i.So D, U ¢ = H°(X, L)* = C"*!. However,
dim D,Uc¢ <dmD,+1=r—r+1<r+1
which is a contradiction. So
sAha#0 %, ., (X, L).
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